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1. INTRODUCTION

Corresponding to any time series {X,; i - 0,1,2,. } is the time series
X;j = 0,1,2, where

xi = b-t (1)
4=1

is the ji batch mean of size b. The batch-means process, or aggregated time series, is
of interest when observations are actually batched (see, e.g., Telser [1967], Amemiya
and Wu [1972], and Tiao [1972]), when calculations need to be simplified (see, e.g.,
Blackman and Tukey [1958, Sec. B. 17]), or when the process mean, E (X), is to be
estimated. The third context motivates our work.

Consider estimating E (X) with the average of n observations. Y" = Xi/ n. Using
s=1

batch means to estimate the variance of the sample mean. V (Y), has long been con-
sidered (see, e.g., Conway [1963]). Brillinger (1973) shows that if the values of a process
at a distance from each other are only weakly dependent, then the batch means are
asymptotically independent and normally distributed. Thus, for large batch size b,
V (X can be estimated using S2k/ k, where k = [n / bJ, S2 

- (k-I[ X, - kAT2I, and[J

denotes the floor function. (Moran [1965] discusses related estimators.) A nominal
100(-a) percent confidence interval on E(X) is then X ±t al _-St k. - 12, where
tjl_/ 24,- is the 1- (a,, 2) quantile of Student's t distribution with k- i degrees of freedom.

The batch means algorithms developed by Mechanic and McKay (1966), Fishman
(1978), Law and Carson (1979), Schriber and Andrews (1979), and Adam (1983) empiri-
cally calculate measures of batch dependency for various batch sizes b in an attempt to

determine a reasonably small value of b that yields batch means that are almost
independent and normally distributed. These procedures require substantial calculation;
Law and Carson (1979), for example, calculate first-order correlations based on 400
batches. That so many batches are required for accurate estimation of dependency
measures is unfortunate, since Schmeiser (1982) shows that, for fixed n. additional
batches beyond some small number (ten to thirty) do little to improve the statistical
properties of the batch means confidence interval procedures. The results of Section 2
are motivated by the idea that knowledge of the relationship between {X,) and {X., } can
be used to measure properties of {X, } even for small values of k.

A second reason for studying the relationship between {X, ) and {A, } is to allow
more efficient simulation studies of batch-means procedures. Studying the performance
of several batch-means procedures in the context of various distributions assumptions
for {X, ) requires a large computational effort, especially when the large sample sizes
required to simulate a system and the large number of replications required for meaning-
ful conclusions are considered. A crude Monte Carlo method is to generate
. . .\.X2, ..... , and calculate the batch means X,,x.... '.,j for all values of b of
interest. A computationally more efficient alternative is to derive the properties of {X, )
from the properties of {X, ) and to generate directly the batch means (X, ). as discussed
in Section 4.



A third motivation is that direct insights might result from studying properties of
{Y ) as functions of the parameters of {X,}. Particularly interesting is the sensitivity of
{Y ) to the underlying process and to the batch size b, as discussed in Kang (1984.,
Chapter 5).

Section 2 contains results relating batch-means processes to arbitrary stationary
autoregressive moving-average (ARMA) processes. Section 3 considers the special case
of the underlying process being ARMA (1,1). Section 4 is a summary containing an
algorithm for determining the batch-means process from the underlying process.

2. BATCH MEANS OF STATIONARY ARMA PROCESSES

The ARMA (p ,q) process {X, } by definition satisfies

P q

EohA,',- (2)
h-0 h=0

. where 00- = 1, 00- 1, and the error terms E are independent with zero mean and vari-
ance a, 2. The main result of this paper is Theorem 1, which states that batch-means
processes arising from ARMA underlying processes are themselves ARMA and specifies
the parameter values.

Theorem 1. Consider the stationary ARMA(p,q) process of equation (2).
-. ~*Then {Xj} is the stat onary ARMA(p , ) process

A=0 h=0

where - 0-1, the batch-means error terms c, are independent random
variables with zero mean and variance a- , and i, 4',2,.-., p, and

, are functions (of the parameters of the underlying process and
the batch size b) given in Lemmas 1, 2, and 4, respectively.

The proof of Theorem I requires the following lemmas.

Lemma I (Anderson [1979a. p. 155]). If the underlying process {X, } is a
stationary ARMA(p .q) process. then the batch-means process {X, } is a sta-
tionary ARMVA(p ,f) process, where 4 = p -I (p - q f/ b I.

S.:*. Anderson uses the more complicated, but equivalent, expression = (p b

Lemma 1 has several direct implications, as discussed in the Appendix.

Lemma 2 (Amerniya and Wu [1972]). The AR parameters 6,,e2. ••
of the batch means process, JX, are the coefficients of B'.B'. B" of

1l11 - a, B). respectively. where . a are the roots of the charac-

teristic equation *(B) - E 0, / o.
h 0

2



Lemma 3. For any stationary process {X6}, the lag-h autocorrelation of
the batch-means process {I } is

b-I 
b Ih =Corr(Xj, X ,+ ) = PI-t)b+i + EiP(h-1)b 2-, /Ibc ]

b-I

where c = 1 + 2 (1-(h/ b))ph, p -- R1/ Ro, and
h-I

R-E (Xj -E X)(Xi+, -E X)j for h = 0,1,2, and = 0,1,2,"..

Proof. For any stationary process, the lag-h covariance of the batch
means process is

Coy (Xi, X*+h) = b- Cov (X(j._)b+,, Xo+1..1)b+k) (3)
if1k=1

(see. e.g.. Kleijnen 11975, p. 507]). which is a special case of the covariance
of linear combinations of random variables as discussed in Box and Jenkins
(1976, pp. 28-29). Also, for any stationary process, each batch mean Yj

*has variance

RO = V (X,) = e RO/ b (4)

(see, e.g., Fishman 11973, p. 281]). The definition of correlation

ii =COV (X,,X,+h) / [V (X,)V (XF,, 1112

and equations (3) and (4) yield
b 4jT%=b 2 E"Cov 'Xu _,I),+,' X( +,'_,),. A, I / le Ro/ b l

__= .-b rCorrvX(,-I)b+,,X(+h-1)b+*]/ ic/l.

w I  i=ilffi

Counting like terms arising from stationarity yields the result. o

Lemma 4 (Anderson [1971. p. 237]). Consider a stationary ARMA(p q)
process with known AR (autoregressive) parameters iT,,2." ,-i; variance
,o, and autocorrelation coefficients P.,P2 , ,. Then the MA (moving-
average) parameters 9 -,. .#- are determined.

Theorem I can now be proven using the four lemmas.

Proof of Theorem I.

1. From Lemma 1. the AR and MA orders of {, , are determined: in
particular. {X, I is an ARMA(p ,) process.

2. From Lemma 2. the AR parameters of {A, } are determined.

3. The autocorrelations PIP2, '-,PbR-I- of a stationary ARMA process
can be calculated using the algorithm of Sweet and Mazaheri (1979).

3



4. Given the autocorrelations from Step 3, the batch-means variance ff0
is determined by equation (4) and the batch-means autocorrelations
-,-2, """, are determined by Lemma 3.

5. The MA parameters i1,82, ",1- are then determined from Lemma
4.o

The representation of the batch-means process is not unique. The batch-means
MA parameters of Lemma 4 require the solution of a polynomial equation of order 2 to
determine ' I,02, " .,W. The 2 roots can be partitioned 2' ways into two sets
(z 1 z 2,-,z 7 ) and (zX2,, 2, . z2 7 ) such that z,+ = 1/ zi. All such subsets of size
from (x1 ,Z, ,Z2,,) determine 11,12,. ,- corresponding to stochastically equivalent
processes. But there is a unique subset of size I having I z < 1, and therefore

= 1/ 1  > 1, for i = 1,2,-..,. Thus for the ARMA(p,47) process there exist
2' - 1 non-invertible processes corresponding to a unique invertible process.

3. ARMA(1,1) BATCH MEANS

Now consider the special case of stationary first-order ARMA processes

X + 40Xi-I = ei + 0 i,_ fori = 1.2, (5)

The low-order moments of {X, } are the zero mean, variance

R0 = 
2 (1 _, 8- 2.6)/ ,(6)

the lag-one autocorrelation

PI (1 - e)(o - )/ (1 + 0 2 - 208). (7)

and lag-h autocorrelations

-, = (-')P,- = (-O)-,P, for h = 2,3, (8)

Closed-form expressions for the parameters of the batch-means process are given in
Theorem 2.

Theorem 2. Consider the stationary ARMA(1.1) process of equation (5).
The corresponding batch-means process is the stationary AR.MLA(11,) pro-

-~ cess

X., 5 = ?,88 for J 1,2,

- - "where

,-.,b + - l ob ' (10)

a- ) (I) (2p _62)'A (

,.-..-."2(pi - 6)

and

4



2= R (I- ) / (P - 2.- + 1) (12)

where

ko= c RO/ b (13)

= p(1+0V' / {bc (1+0)21 (14)

and

= 1 + {2pi[(-.,)' + b (1+0) - I] / lb (1+0)21)} (15)

Proof of Theorem 2.

Equations (13), (14), and (15) follow from Lemma 3 and equation (4)
via equation (8). Since {X,} is ARMA(ij), {j, } is also ARMA(1,1) by
Lemma 1: that is, equation (9) holds. Equation (10) is a special case of
Lemma 2. Since {X, } is ARMA(1,1), equation (7) yields

W, = (1- O)(O- ) / (I+P -2Fe).

0 Solving for F yields the two roots of equation (11). Since {Xj } is an
ARMA(ij) process, equation (6) holds with the batch-means parameters:

,? .: Ro = Go?(1+P-2 -) / (l- 2).

Solving for the variance of the batch-means error term, o,2, with either
value of F from equation (11) yields equation (12). (But note that the
value of a2 depends on the choice of -). 0

4. SUMMARY

Properties of batch means are studied under the assumption that the underlying
%.- ~ process is ARMA(p,q). For ARMA(1,1) processes, closed-form expressions for the

corresponding batch-means processes are obtained. A numerical procedure is developed
-' for calculating the parameters of the ARMA batch-means process from the parameters

of the underlying process and the batch size b. This procedure is stated concisely here
for convenience.

ARMA(pq) Procedure.

Given parameters 01,02, " ,. ,18 , . error variance 0,2, and batch
size b, calculate

I.j = p -[(p -li bJ

2. i,,5, .. ,, using Lemma 2

3. Ro,p 1 ,p 2 . pb from the Yule-Walker equations. probably using
the algorithm of Sweet and Mazaheri (1979)

4. 1 - 2 E (I-(h b))ph
h~5



5. &o from equation (4)

6. -1,-j2, - - , using Lemma 3

7. 1,2, • from Lemma 4

8. . 2 from equation (13) of Anderson (1971, p. 237).

A FORTRAN implementation of the ARMA(p ,q) procedure is given in Kang (1984).

When the underlying process is ARMA(1,1), the following closed-form procedure
can be used:

ARMA(1,1) Procedure.

Given parameters 0, 9, error variance 0,
2, and batch size b, calculate

1. q=1

2. i from equation (10)

3. R 0 from equation (6), p, from equation (7)

4. c from equation (15)

5. ko from equation (13)

6. j from equation (14)

7. F from equation (11)

8. aF2 from equation (12)

Notice in the ARMA(1,1) special case that calculation in step 3 of all 2b -1 autocorrela-
tions of the underlying process is not necessary.

If the underlying error terms ,. are normally distributed, then the batch-means
error terms F- are also normally distributed (see, e.g., Johnson and Kotz [1971, p. 51]).
Therefore, generation of random variates directly from the batch-means process is
straightforward using equation (9), thereby avoiding the costly computations of aggre-
gating observations from the underlying process. Initialization for steady-state results is
straightforward for AR and MA processes, but initialization for ARMA is complicated
unless the process is warmed-up by discarding some initial observations (Anderson
[1979b]).

6
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2 ,.APPENDIX

Although Lemma 1 is simple to state compactly, its implications are more clear
when cases are considered individually:

If and then
b <p -q q<ij<p -I

p>q b=p-q 4=p-1

____.b >p -q q=p
p =q 4____ qp

b<q-p p+2-< q

p <q b =q -p 4-= p "1

b >q -p 4=p -- 1

Many results can be stated immediately from examination of these individual
cases. Five such results are:

Result 1. If {X,} is AR(p), then {Y,} is ARMN1A(p,q), as studied by
- Amemiya and Wu (1972). Additionally, 1 < < p.

Result 2. If {X, is MA(q), then {J', j is MAW4-), where I q.

"'"-Result 3. If {X, } is AR or ARMA with batch size satisfying 0 < p - q < b
then {, } is ARMA(p ,p).

Result 4. If p >q, then lim q= p.

Result 5. Ifp < q, then lim = p +1.

Of course, considering only the order of the batch-means process can be mislead-
ing. For example, Results 4 and 5 indicate that large batches lead to MA components
of order p or p +1; in particular, a batched MA(q) process converges to an MA(1) pro-

cess. But large batches are asymptotically independent. The explanation is that 0- is
approaching zero as batch size increases. An implication is that. even for this nicest
case of ARMA underlying processes, estimation of the order of the batch-means process

is likely to be difficult.
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